91 research outputs found

    Einsatz internetbasierter Projektplattformen im Bereich der Bauausführung - "Digitales Bautagebuch"

    Get PDF
    Der Einsatz internetbasierter Projektplattformen in der Bauausführung wurde bisher kaum thematisiert. Die typischen Vorteile des Einsatzes solcher Werkzeuge, wie etwa die Unterstützung kooperativer, geographisch und zeitlich verteilter Prozesse, scheinen für diesen Einsatzbereich nicht so offensichtlich zu sein wie für den Bereich der Gebäudeplanung. Vor dem Hintergrund der anhaltend problematischen Situation der Bauwirtschaft und der Tatsache, dass im Bereich der Bauausführung oftmals die wesentlichen Ursachen für einen unplanmäßigen Ablauf von Bauprojekten oder ein Verfehlen von Kosten-, Termin- oder Qualitätszielen zu finden sind, kommt diesen Anwendungen eine große Bedeutung zu. Im Rahmen eines größeren Forschungsprojektes des BMWi (TK3 GIT Siegen / Projektträger PTJ-BEO) wurde unter dem Arbeitstitel >Digitales Bautagebuch< ein ausführungsorientiertes Modul für eine schon in den Planungsphasen des Projektes eingesetzte Projektplattform entwickelt. Dabei wurde projektbegleitend eine Umgebung implementiert, welche sowohl die Bauleitung bei ihrer täglichen Arbeit unterstützt als auch Entscheidungsträgern und anderen Projektbeteiligten einen schnellen Überblick über den Stand der Arbeiten ermöglicht. Dieser Beitrag setzt sich mit dem Einsatz internetbasierter Projektplattformen im Bereich der Bauausführung auseinander und beschreibt deren Möglichkeiten unter Einbringung der Erfahrungen aus der Anwendung im Bauprojekt TK3 GIT Siegen

    PLAN B - Eine Untersuchung der Situation kleiner Architekturbüros

    Get PDF

    Einsatz internetbasierter Projektplattformen im Bereich der Bauausführung - "Digitales Bautagebuch"

    Get PDF
    Der Beitrag setzt sich mit dem Einsatz internetbasierter Projektplattformen im Bereich der Bauausführung auseinander und beschreibt deren Möglichkeiten unter Einbringung der Erfahrungen aus der Anwendung im Bauprojekt TK3 GIT Siegen. Keywords Kooperatives Arbeiten, anforderungsorientierte Projektabwicklung, internetbasierte Projektplattform, Digitales Bautagebuc

    Constraints on Assembly Bias from Galaxy Clustering

    Full text link
    We constrain the newly-introduced decorated Halo Occupation Distribution (HOD) model using SDSS DR7 measurements of projected galaxy clustering or r-band luminosity threshold samples. The decorated HOD is a model for the galaxy-halo connection that augments the HOD by allowing for the possibility of galaxy assembly bias: galaxy luminosity may be correlated with dark matter halo properties besides mass, Mvir. We demonstrate that it is not possible to rule out galaxy assembly bias using DR7 measurements of galaxy clustering alone. Moreover, galaxy samples with Mr < -20 and Mr < -20.5 favor strong central galaxy assembly bias. These samples prefer scenarios in which high-concentration are more likely to host a central galaxy relative to low-concentration halos of the same mass. We exclude zero assembly bias with high significance for these samples. Satellite galaxy assembly bias is significant for the faintest sample, Mr < -19. We find no evidence for assembly bias in the Mr < -21 sample. Assembly bias should be accounted for in galaxy clustering analyses or attempts to exploit galaxy clustering to constrain cosmology. In addition to presenting the first constraints on HOD models that accommodate assembly bias, our analysis includes several improvements over previous analyses of these data. Therefore, our inferences supersede previously-published results even in the case of a standard HOD analysis.Comment: 15 pages, 8 figures. To be submitted to MNRAS. Comments Welcome. Python scripts to perform this analysis and MCMC chains will all be made publicly availabl

    Maturing Satellite Kinematics into a Competitive Probe of the Galaxy-Halo Connection

    Full text link
    The kinematics of satellite galaxies moving in a dark matter halo are a direct probe of the underlying gravitational potential. Thus, the phase-space distributions of satellites represent a powerful tool to determine the galaxy-halo connection from observations. By stacking the signal of a large number of satellite galaxies this potential can be unlocked even for haloes hosting a few satellites on average. In this work, we test the impact of various modelling assumptions on constraints derived from analysing satellite phase-space distributions in the non-linear, 1-halo regime. We discuss their potential to explain the discrepancy between average halo masses derived from satellite kinematics and gravitational lensing previously reported. Furthermore, we develop an updated, more robust analysis to extract constraints on the galaxy-halo relation from satellite properties in spectroscopic galaxy surveys such as the SDSS. We test the accuracy of this approach using a large number of realistic mock catalogues. Furthermore, we find that constraints derived from such an analysis are complementary and competitive with respect to the commonly used galaxy clustering and galaxy-galaxy lensing observables.Comment: 24 pages, 15 figures; resubmitted to MNRAS after first referee repor

    Updated Results on the Galaxy-Halo Connection from Satellite Kinematics in SDSS

    Full text link
    We present new results on the relationship between central galaxies and dark matter haloes inferred from observations of satellite kinematics in the Sloan Digital Sky Survey (SDSS) DR7. We employ an updated analysis framework that includes detailed mock catalogues to model observational effects in SDSS. Our results constrain the colour-dependent conditional luminosity function (CLF) of dark matter haloes, as well as the radial profile of satellite galaxies. Confirming previous results, we find that red central galaxies live in more massive haloes than blue galaxies at fixed luminosity. Additionally, our results suggest that satellite galaxies have a radial profile less centrally concentrated than dark matter but not as cored as resolved subhaloes in dark matter-only simulations. Compared to previous works using satellite kinematics by More et al., we find much more competitive constraints on the galaxy-halo connection, on par with those derived from a combination of galaxy clustering and galaxy-galaxy lensing. We compare our results on the galaxy-halo connection to other studies using galaxy clustering and group catalogues, showing very good agreement between these different techniques. We discuss future applications of satellite kinematics in the context of constraining cosmology and the relationship between galaxies and dark matter haloes.Comment: 18 pages, 10 figures, submitted to MNRAS, comments welcom

    Brightest galaxies as halo centre tracers in SDSS DR7

    Full text link
    Determining the positions of halo centres in large-scale structure surveys is crucial for many cosmological studies. A common assumption is that halo centres correspond to the location of their brightest member galaxies. In this paper, we study the dynamics of brightest galaxies with respect to other halo members in the Sloan Digital Sky Survey DR7. Specifically, we look at the line-of-sight velocity and spatial offsets between brightest galaxies and their neighbours. We compare those to detailed mock catalogues, constructed from high-resolution, dark-matter-only NN-body simulations, in which it is assumed that satellite galaxies trace dark matter subhaloes. This allows us to place constraints on the fraction fBNCf_{\rm BNC} of haloes in which the brightest galaxy is not the central. Compared to previous studies we explicitly take into account the unrelaxed state of the host haloes, velocity offsets of halo cores and correlations between fBNCf_{\rm BNC} and the satellite occupation. We find that fBNCf_{\rm BNC} strongly decreases with the luminosity of the brightest galaxy and increases with the mass of the host halo. Overall, in the halo mass range 1013−1014.5h−1M⊙10^{13} - 10^{14.5} h^{-1} M_\odot we find fBNC∼30%f_{\rm BNC} \sim 30\%, in good agreement with a previous study by Skibba et al. We discuss the implications of these findings for studies inferring the galaxy--halo connection from satellite kinematics, models of the conditional luminosity function and galaxy formation in general.Comment: 24 pages, 15 figures. Accepted for publication in MNRA

    Galaxy Assembly Bias: A Significant Source of Systematic Error in the Galaxy-Halo Relationship

    Full text link
    It is common practice for methods that use galaxy clustering to constrain the galaxy-halo relationship, such as the halo occupation distribution (HOD) and/or conditional luminosity function (CLF), to assume that halo mass alone suffices to determine a halo's resident galaxy population. Yet, the clustering strength of cold dark matter halos depends upon halo properties in addition to mass, such as formation time, an effect referred to as assembly bias. If galaxy characteristics are correlated with any of these auxiliary halo properties, the basic assumption of HOD/CLF methods is violated. We estimate the potential for assembly bias to induce systematic errors in inferred halo occupation statistics. We use halo abundance matching and age matching to construct fiducial mock galaxy catalogs that exhibit assembly bias as well as additional mock catalogs with identical HODs, but with assembly bias removed. We fit a parameterized HOD to the projected two-point clustering of mock galaxies in each catalog to assess the systematic errors induced by reasonable levels of assembly bias. In the absence of assembly bias, the inferred HODs generally describe the true underlying HODs well, validating the basic methodology. However, in all of the cases with assembly bias, the inferred HODs have systematic errors that are statistically significant. In most cases, these systematic errors cannot be identified using void statistics as auxiliary observables. We conclude that the galaxy-halo relationship inferred from galaxy clustering should be subject to a non-negligible systematic error induced by assembly bias. Our work suggests that efforts to model and/or constrain assembly bias should be high priorities as it is a threatening source of systematic error in galaxy evolution studies as well as the precision cosmology program.Comment: 28 pages, 15 figures including an appendix. v2 includes minor revisions based upon referee comments. Accepted for publication in the MNRAS. Title changed from original "Phantom Menace of Galaxy Clustering

    The Galaxy Clustering Crisis in Abundance Matching

    Full text link
    Galaxy clustering on small scales is significantly under-predicted by sub-halo abundance matching (SHAM) models that populate (sub-)haloes with galaxies based on peak halo mass, MpeakM_{\rm peak}. SHAM models based on the peak maximum circular velocity, VpeakV_{\rm peak}, have had much better success. The primary reason MpeakM_{\rm peak} based models fail is the relatively low abundance of satellite galaxies produced in these models compared to those based on VpeakV_{\rm peak}. Despite success in predicting clustering, a simple VpeakV_{\rm peak} based SHAM model results in predictions for galaxy growth that are at odds with observations. We evaluate three possible remedies that could "save" mass-based SHAM: (1) SHAM models require a significant population of "orphan" galaxies as a result of artificial disruption/merging of sub-haloes in modern high resolution dark matter simulations; (2) satellites must grow significantly after their accretion; and (3) stellar mass is significantly affected by halo assembly history. No solution is entirely satisfactory. However, regardless of the particulars, we show that popular SHAM models based on MpeakM_{\rm peak} cannot be complete physical models as presented. Either VpeakV_{\rm peak} truly is a better predictor of stellar mass at z∼0z\sim 0 and it remains to be seen how the correlation between stellar mass and VpeakV_{\rm peak} comes about, or SHAM models are missing vital component(s) that significantly affect galaxy clustering.Comment: 25 pages, 22 figures, submitted to MNRAS, comments welcom
    • …
    corecore